
Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

1

Government Arts and Science College (Women),

Sathankulam – 628704

Class : II B.Sc. (Computer Science)

Semester : IV

Subject : Web Technology

Topic : Unit III

Faculty : Mrs. A. Angeline Nancy Sophia M.Sc., M.Phil.,

 Department of Computer Science

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

2

JAVA SCRIPT

 Java Script was designed to provide a quicker and simpler language for

enhancing web pages and web servers.

 JavaScript is a dynamic computer programming language.

 It is lightweight and most commonly used as a part of web pages, whose

implementations allow client-side script to interact with the user and make

dynamic pages.

 It is an interpreted programming language with object-oriented capabilities.

 Simple statements in JavaScript are generally followed by a semicolon

character

 JavaScript, however, allows you to omit this semicolon if each of your

statements are placed on a separate line

 JavaScript is a case-sensitive language

 There is a flexibility given to include JavaScript code anywhere in an HTML

document.

 Script in <body>...</body> and <head>...</head> sections.

 JavaScript in <head>...</head> section

<html>

<head>

 <script type = "text/javascript">

 <!-- function sayHello()

{

 alert("Hello World")

} //-->

</script>

</head>

<body>

<input type = "button" onclick = "sayHello()" value = "Say Hello" />

 </body>

</html>

 JavaScript in <body>...</body> section

<html>

<head>

</head>

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

3

<body>

 <script type = "text/javascript">

 <!-- document.write("Hello World") //-->

 </script>

<p>This is web page body </p>

 </body>

 </html>

Variables

 Variables are declared with the var keyword

 <script type = "text/javascript">

 <!-- var money; var name; //--> </script>

 Storing a value in a variable is called variable initialization

 <script type = "text/javascript">

<!-- var name = "Ali"; var money; money = 2000.50; //--> </script>

 JavaScript Variable Scope

 The scope of a variable is the region of your program in which it is

defined. JavaScript variables have only two scopes.

 Global Variables − A global variable has global scope which means it

can be defined anywhere in your JavaScript code.

 Local Variables − A local variable will be visible only within a function

where it is defined. Function parameters are always local to that

function.

LANGUAGE ELEMENTS

 Identifiers

 Expressions

 JavaScript keywords

 Operators

 Statements

 Functions

Identifiers

 It is an unique term to identify a variable, method or an object.

 It can be literals and variables

 Literals are identifiers having fixed values

 Variables have different values during execution.

 There are several types of data. They are integers, floating point numbers,

Strings and Boolean

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

4

Expressions

 An expression is a statement that is evaluated to a value.

 The result may be any type.

 Expressions contains variables, literals, operators and other expressions.

 Example:

Y=67;

Str=“Good Morning”;

Val= x + y * b;

Keywords

 The language has a set of keywords reserved for a specific purpose.

 They cannot be used as variables or constants.

 Example:

 abstract boolean break byte case catch

Operators

 Operators are commands which perform operations on variables and or

literals and produce a result.

 There are two types of operator: unary, binary.

 Unary operate on only one operand.

 Binary operator operate on two operands.

 Types of operator:

 Arithmetic operators

 Comparison operators

 Logical operators

Arithmetic operators

+ (Addition)

 Adds two operands

 Ex: A + B will give 30

- (Subtraction)

 Subtracts the second operand from the first

 Ex: A - B will give -10

* (Multiplication)

 Multiply both operands

 Ex: A * B will give 200

/ (Division)

 Divide the numerator by the denominator

 Ex: B / A will give 2

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

5

% (Modulus)

 Outputs the remainder of an integer division

 Ex: B % A will give 0

++ (Increment)

 Increases an integer value by one

 Ex: A++ will give 11

-- (Decrement)

 Decreases an integer value by one

 Ex: A-- will give 9

Example

<html>

 <body>

<script type = "text/javascript">

<!-- var a = 33; var b = 10; var c = "Test";

 document.write("a + b = ");

result = a + b; document.write(result);

document.write("a - b = ");

result = a - b; document.write(result);

document.write("a / b = ");

result = a / b; document.write(result);

document.write("a % b = ");

result = a % b; document.write(result);

document.write("a + b + c = ");

result = a + b + c; document.write(result);

a = ++a; document.write("++a = ");

result = ++a; document.write(result);

b = --b; document.write("--b = ");

result = --b; document.write(result);

 //--> </script>

</body> </html>

Output

a + b = 43

a - b = 23

a / b = 3.3

a % b = 3

a + b + c = 43

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

6

 ++a = 35

--b = 8

Comparison operators

= = (Equal)

 Checks if the value of two operands are equal or not, if yes, then the

condition becomes true.

 Ex: (A == B) is not true.

!= (Not Equal)

 Checks if the value of two operands are equal or not, if the values are not

equal, then the condition becomes true.

 Ex: (A != B) is true.

> (Greater than)

 Checks if the value of the left operand is greater than the value of the right

operand, if yes, then the condition becomes true.

 Ex: (A > B) is not true.

< (Less than)

 Checks if the value of the left operand is less than the value of the right

operand, if yes, then the condition becomes true.

 Ex: (A < B) is true.

>= (Greater than or Equal to)

 Checks if the value of the left operand is greater than or equal to the value of

the right operand, if yes, then the condition becomes true.

 Ex: (A >= B) is not true.

<= (Less than or Equal to)

 Checks if the value of the left operand is less than or equal to the value of

the right operand, if yes, then the condition becomes true.

 Ex: (A <= B) is true.

Example

<html>

 <body>

 <script type = "text/javascript">

 <!-- var a = 10; var b = 20; var linebreak = "
";

 document.write("(a == b) => ");

result = (a == b); document.write(result);

 document.write("(a < b) => ");

result = (a < b); document.write(result);

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

7

 document.write("(a > b) => ");

result = (a > b); document.write(result);

 document.write("(a != b) => ");

result = (a != b); document.write(result);

document.write("(a >= b) => ");

result = (a >= b); document.write(result);

document.write("(a <= b) => ");

result = (a <= b); document.write(result); //--> </script> </body> </html>

Output

(a == b) => false

(a < b) => true

(a > b) => false

(a != b) => true

(a >= b) => false

(a <= b) => true

Logical operators

&& (Logical AND)

 If both the operands are non-zero, then the condition becomes true.

 Ex: (A && B) is true.

|| (Logical OR)

 If any of the two operands are non-zero, then the condition becomes true.

 Ex: (A || B) is true.

! (Logical NOT)

 Reverses the logical state of its operand. If a condition is true, then

the Logical NOT operator will make it false.

 Ex: ! (A && B) is false.

Example

<html>

 <body>

<script type = "text/javascript">

<!-- var a = true; var b = false;

document.write("(a && b) => ");

result = (a && b); document.write(result);

document.write("(a || b) => ");

result = (a || b); document.write(result);

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

8

 document.write("!(a && b) => ");

result = (!(a && b)); document.write(result);

//--> </script> </body> </html>

Output

(a && b) => false

(a || b) => true

!(a && b) => true

String operators

 For concatenating two strings ‘+’ is used.

 str = “Good” + “day”;

Statements

if statement

Syntax

 if (expression) {

 Statement(s) to be executed if expression is true }

 If the resulting value is true, the given statement(s) are executed. If

the expression is false, then no statement is executed.

<html>

 <body>

 <script type = "text/javascript">

 <!-- var age = 20;

if(age > 18) { document.write("Qualifies for driving");

} //--> </script>

 <p>Set the variable to different value and then try...</p>

 </body>

</html>

Output

Qualifies for driving

Set the variable to different value and then try...

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

9

if...else statement

The 'if...else' statement allows JavaScript to execute statements in a more

controlled way.

Syntax

 if (expression) { Statement(s) to be executed if expression is true

 }

else { Statement(s) to be executed if expression is false

}

If the resulting value is true, the given statement(s) in the ‘if’ block, are

executed. If the expression is false, then the given statement(s) in the else block are

executed.

<html>

 <body>

<script type = "text/javascript">

 <!-- var age = 15;

if(age > 18) { document.write("Qualifies for driving");

} else { document.write("Does not qualify for driving");

} //--> </script>

 <p>Set the variable to different value and then try...</p> </body> </html>

Output

Does not qualify for driving

Set the variable to different value and then try...

if...else if... statement

Syntax

if (expression 1) {

 Statement(s) to be executed if expression 1 is true

} else if (expression 2) {

 Statement(s) to be executed if expression 2 is true

} else if (expression 3) {

 Statement(s) to be executed if expression 3 is true

} else {

 Statement(s) to be executed if no expression is true

}

Statement(s) are executed based on the true condition, if none of the conditions is

true, then the else block is executed.

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

10

<html>

 <body>

 <script type = "text/javascript">

 <!-- var book = "maths";

if(book == "history") {

 document.write("History Book");

} else if(book == "maths") {

 document.write("Maths Book");

} else if(book == "economics") { document.write("Economics Book");

} else {

 document.write("Unknown Book"); } //--> </script>

<p>Set the variable to different value and then try...</p> </body>

<html>

Output

Maths Book

Set the variable to different value and then try...

Switch Statement

To perform a multiway branch we use a switch statement

Syntax

switch (expression) {

 case condition 1: statement(s)

 break;

 case condition 2: statement(s)

 break;

 ...

 case condition n: statement(s)

 break;

 default: statement(s)

}

<html>

 <body>

<script type = "text/javascript">

 <!-- var grade = 'A';

 document.write("Entering switch block
");

 switch (grade) {

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

11

 case 'A': document.write("Good job
");

 break;

 case 'B': document.write("Pretty good
");

 break;

 case 'C': document.write("Passed
");

 break;

 case 'D': document.write("Not so good
");

 break;

 case 'F': document.write("Failed
");

 break;

 default: document.write("Unknown grade
")

}

 document.write("Exiting switch block"); //--> </script>

 <p>Set the variable to different value and then try...</p> </body> </html>

Output

Entering switch block

Good job

Exiting switch block

Set the variable to different value and then try...

The while Loop

 while loop is to execute a statement or code block repeatedly as long

as an expression is true. Once the expression becomes false, the loop terminates.

Syntax

while (expression) {

 Statement(s) to be executed if expression is true

}

<html>

<body>

 <script type = "text/javascript">

 <!-- var count = 0;

document.write("Starting Loop ");

while (count < 10) {

 document.write("Current Count : " + count + "
"); count++;

} document.write("Loop stopped!"); //--> </script>

 <p>Set the variable to different value and then try...</p>

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

12

</body> </html>

Output

Starting Loop

Current Count : 0

Current Count : 1

Current Count : 2

Current Count : 3

Current Count : 4

Current Count : 5

Current Count : 6

Current Count : 7

Current Count : 8

Current Count : 9

Loop stopped! Set the variable to different value and then try...

The do...while Loop

 The do...while loop is similar to the while loop except that the condition

check happens at the end of the loop.

Syntax

do {

Statement(s) to be executed;

} while (expression);

<html>

 <body>

<script type = "text/javascript">

 <!-- var count = 0;

 document.write("Starting Loop" + "
");

 do {

 document.write("Current Count : " + count + "
"); count++;

} while (count < 5);

document.write ("Loop stopped!"); //--> </script>

<p>Set the variable to different value and then try...</p> </body> </html>

Output

Starting Loop

Current Count : 0

Current Count : 1

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

13

Current Count : 2

Current Count : 3

Current Count : 4

Loop Stopped!

Set the variable to different value and then try...

For Loop

The 'for' loop is the most compact form of looping. It includes the following three

important parts −

 The loop initialization where we initialize our counter to a starting value.

The initialization statement is executed before the loop begins.

 The test statement which will test if a given condition is true or not. If the

condition is true, then the code given inside the loop will be executed,

otherwise the control will come out of the loop.

 The iteration statement where you can increase or decrease your counter.

Syntax

for (initialization; test condition; iteration statement) {

 Statement(s) to be executed if test condition is true

 }

<html>

<body>

 <script type = "text/javascript">

<!-- var count;

document.write("Starting Loop" + "
");

for(count = 0; count < 10; count++) { document.write("Current Count : " + count);

document.write("
");

} document.write("Loop stopped!"); //--> </script>

 <p>Set the variable to different value and then try...</p> </body> </html>

Output

Starting Loop

Current Count : 0

 Current Count : 1

 Current Count : 2

 Current Count : 3

 Current Count : 4

 Current Count : 5

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

14

Current Count : 6

 Current Count : 7

Current Count : 8

 Current Count : 9

Loop stopped!

Set the variable to different value and then try...

The for...in loop is used to loop through an object's properties.

Syntax

for (variablename in object) {

 statement or block to execute

}

In each iteration, one property from object is assigned to variablename and this

loop continues till all the properties of the object are exhausted.

<html>

<body>

 <script type = "text/javascript">

 <!-- var aProperty;

 document.write("Navigator Object Properties
 ");

for (aProperty in navigator) {

 document.write(aProperty);

 document.write("
");

} document.write ("Exiting from the loop!"); //--> </script>

 <p>Set the variable to different object and then try...</p> </body> </html>

Output

Navigator Object Properties

 serviceWorker

webkitPersistentStorage

webkitTemporaryStorage

geolocation

doNotTrack

FUNCTIONS

 A function is a group of reusable code which can be called anywhere in your

program.

 This eliminates the need of writing the same code again and again.

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

15

 It helps programmers in writing modular codes.

 Functions allow a programmer to divide a big program into a number of

small and manageable functions.

Function Definition

Before we use a function, we need to define it. We define a function in

JavaScript is by using the function keyword, followed by a unique function name,

a list of parameters (that might be empty), and a statement block surrounded by

curly braces.

Syntax

<script type = "text/javascript">

<!-- function functionname(parameter-list) {

statements

} //-->

 </script>

<html>

<head>

<script type = "text/javascript">

 function sayHello() {

document.write ("Hello there!");

}

</script>

</head>

<body> <p>Click the following button to call the function</p>

 <form> <input type = "button" onclick = "sayHello()" value = "Say Hello">

</form> <p>

Use different text in write method and then try...</p> </body> </html>

Function Parameter and the return Statement

A JavaScript function can have an optional return statement. This is

required if you want to return a value from a function. This statement should be

the last statement in a function.

<html>

 <head>

 <script type = "text/javascript">

function concatenate(first, last) {

Web Technology By Mrs. A. Angeline Nancy Sophia M.Sc.,M.Phil.,

16

var full; full = first + last; return full;

}

function secondFunction() {

var result;

result = concatenate('Zara', 'Ali');

document.write (result);

} </script>

</head> <body>

<p>Click the following button to call the function</p>

<form> <input type = "button" onclick = "secondFunction()" value = "Call

Function"> </form>

<p>Use different parameters inside the function and then try...</p> </body>

 </html>

