UNIT-3

BEHAVIOUR OF MONOTONIC SEQUENCES:

The following theorem gives the complete behaviour of monotonic sequences.

Theorem 3.21:

- A monotonic increasing sequence which is bounded above converges to its full.
- A monotonic increasing sequence which is not bounded above diverges to ∞.
- iii. A monotonic decreasing sequence which is bounded below converges to its glb
- iv. A monotonic decreasing sequence which is not bounded below diverges to-∞.

Proof:

i. Let (a_n) be a monotonic increasing sequence which is bounded above.

Let k be the fub of the sequence

Then $a_n \le k$ for all n.(1)

Now, let $\varepsilon > 0$ be given.

∴ k-ε<k and hence k-ε is not an upper bound of (an).

Hence, there exists a_m such that a_m >k-ε

Now, since (a_n) is monotonic increasing,a_n≥a_m for all n≥m.

 $\therefore K-\mathcal{E} < a_n \le k \text{ for all } n \ge m \quad \text{(by (1) and (2))}$

∴|a_{n-k}|<εfor all n≥m.

-	40		196		- 1	ü		
-	- 1	17%	1	_		ь	gr.	
	-1	at Bar		_	•	н	Œ.	L
	- 4.						-	۰

(ii) Let (an) be a monotonic increasing sequences which is not bounded above.

Let k>0 be any real number.

Since (a_n) is not bounded, there exists $m \in \mathbb{N}$ such that $a_m > k$. Also $a_n \ge a_m$ for all $n \ge m$.

∴a_n>k for all n≥m.

$$(a_n) \rightarrow \infty$$

(iii) Let an be a monotonic decreasing sequence which is bounded below.

Than $a_n \ge k$ be given $l + \varepsilon > l$

Hence $l \cdot \varepsilon$ is not an lower bound of (a_n) .

Hence there exists a_m such that $a_m < l + \epsilon$ (2)

Now, Since (a_n) is monotonic decreasing a_m>a_n for all n≥m.

$$a_n < l + \varepsilon$$

$$l \le a_n < l + \varepsilon$$
 (by(2)and(3))

|a_n-t| <ε for all n≥m.

$$(a_n) \rightarrow l$$

(iv) Let (an) be a monotonic decreasing sequence which is not bounded below.

Let k<0 be any real number.

Since (an) is not bounded below.

There exists m€N such a_m<k.......(1)

Also $a_n \le a_m (by (1) and (2))$ (2)

A_n<k for all n≥m

 $(a_n) \rightarrow -\infty$

The above theorem shows that a monotonic sequence either converges or diverges. Thus a monotonic sequence cannot be an oscillating sequence.

SOLVED PROBLEMS

PROBLEM: 1

Let $a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!}$. Show that $\lim_{n \to \infty} a_n$ exists and lies between 2 and 3.

Solution: Clearly (an) is a monotonic increasing sequence.

Also
$$a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!}$$

$$\leq 1+1+\frac{1}{2}+\frac{1}{2^2}+\dots+\frac{1}{n!}$$

$$=1+\left(1-\frac{1}{2^n}/1-\frac{1}{2}\right)$$

$$=1+\left(1-\frac{1}{2^n}\setminus\frac{2-1}{2}\right)$$

$$s_n = a \left(\frac{1 - r^n}{1 - r} \right)$$

$$=1+\left(1-\frac{1}{2^{n}}\setminus\frac{1}{2}\right)$$

$$=1+2\left(1-\frac{1}{2^{n}}\right) =1+2-\frac{2}{2^{n}}$$

$$=3-\frac{1}{2^{n-1}}<3$$
 $=a_n<3$

: (an) is bounded above.

 $\lim_{n\to\infty} a_n$ exists.

Also 2<a_n<3 for all n.

$$\therefore 2 \le \lim_{n \to \infty} a_n \le 3$$

Hence the result.

NOTE: The limit of the above sequence is denoted by e.

PROBLAM: 2

Show that the sequence $\left(1+\frac{1}{n}\right)^n$ converges.

SOLUTION:

$$\begin{aligned} a_n &= 1 + 1 + \frac{n(n-1)}{2!} \frac{1}{n^2} + \frac{n(n-1)(n-2)}{3!} \frac{1}{n^3} + \dots + \frac{1}{n^n} \\ &= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \dots$$

$$=1+1+\frac{1}{2!}+\frac{1}{3!}+\dots+\frac{1}{n!}$$

$$a_{n}<3 \qquad 2\leq \lim n\leq 3$$

.. (an) is bounded above.

Also,

$$a_{n+1}=1+1+\frac{1}{2!}\left(1-\frac{1}{n+1}\right)+\frac{1}{3!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)+\dots+\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right)\dots-\left(1-\frac{n}{n+1}\right)$$

$$>1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\dots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)$$

 $=\frac{2}{n}\dots\left(1-\frac{n-1}{n}\right).$

- ::(an) is monotonic increasing.
- .: (an) is a convergent sequence.

1. show that $\lim_{n\to\infty} (1+\frac{1}{n})^n = \lim_{n\to\infty} (1+\frac{1}{n!}+\cdots+\frac{1}{n!}) = e$ solution

let
$$a_n = (1 + \frac{1}{n})^n$$
 and $b_n = 1 + \frac{1}{1!} + \dots + \frac{1}{n!}$

then $a_n < b_n$ for all n

$$:: \lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n \quad \dots \dots \quad 1$$

Now

Let m > n

$$a_{m} = (1 + \frac{1}{m})^{m}$$

$$=1+1+\frac{1}{2!}\left(1-\frac{1}{m}\right)+\frac{1}{3!}\left(1-\frac{1}{m}\right)\left(1-\frac{2}{m}\right)+\ldots+\frac{1}{n!}\left(1-\frac{1}{m}\right)\ldots$$

$$\left(1-\frac{n-1}{m}\right)+\ldots+\frac{1}{m!}\left(1-\frac{1}{m}\right)\ldots\left(1-\frac{m-1}{m}\right)$$

$$>1+1+\frac{1}{2!}(1-\frac{1}{m})+\cdots+\frac{1}{n!}(1-\frac{1}{m})\cdots(1-\frac{n-1}{m})$$

Fixing n and taking lim as m→ ∞ we get

$$\lim_{m\to\infty} a_m \ge 1 + 1 + \frac{1}{2!} + \cdots + \frac{1}{n!} = b_n$$

Now taking limit as n→ ∞ we get

$$\therefore \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = e \quad (b \ 1) \ and \ 2)$$

2. let
$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$$
 show that (a_n) converges Solution

$$= \left(\frac{1}{n+2} + \dots + \frac{1}{2n+1}\right) - \left(\frac{1}{n+1} + \dots + \frac{1}{n+n}\right)$$

$$= \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$=\frac{1}{2n+1}-\frac{1}{2n+2}>0$$
 for all n

$$a_{n+1} > a_n$$
 for all n

∴ (a_n) is a monotonic increasing sequence
Also

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

$$<\frac{1}{n}+\frac{1}{n}+\dots+\frac{1}{n}=1$$
 for all n

3 .let
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 show that (a_n) diverges to ∞

Solution

Clearly (an) is a monotonic increasing sequence

Now let
$$m=2^n-1$$

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}}$$

$$= 1 + (\frac{1}{2} + \frac{1}{3}) + (\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}) + \dots + (\frac{1}{2^{n-1}} + \dots + \frac{1}{2^{n-1}})$$

$$> 1 + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + \dots + (\frac{1}{2^n} + \dots + \frac{1}{2^n})$$

$$=1+(n-1)^{\frac{1}{2}}$$

$$=\frac{1}{2}(n+1)$$

$$(a_n) > \frac{1}{2}(n+1)$$

 $: (a_n)$ Is not bounded above

Hence
$$(a_n) \rightarrow \infty$$

4. Prove that (n!/nⁿ) converges.

Solution:

Let,
$$a_n = \frac{n!}{n^n}$$

$$a_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}}$$

Then,
$$\frac{a_n}{a_{n+1}} = \frac{n!}{n^n} \cdot \frac{(n+1)^{n+1}}{(n+1)!}$$

$$\frac{a_n}{a_{(n+1)}} = \frac{n!}{n^n} \times \frac{(n+1)^n \cdot (n+1)}{n! \cdot (n+1)}$$

$$\frac{a_n}{a_{n+1}} = \left(\frac{n+1}{n}\right)^n > 1$$

$$\therefore a_n > a_{n+1} \text{ for all } n \in N$$

 (a_n) is a monotonic decreasing sequence.

Also,
$$a_n > 0$$
 for all $n \in N$
$$(a_n) \text{ Is a bounded below }.$$
 If (a_n) converges.

Discuss the behavior of the geometric sequence (rⁿ)

SOLUTION:

Case(i):

Let r = 0

Then (rn) reduces to the constant sequence 0,0.....and hence converges to 0

Case(ii):

Let r = 1

In this case (rn) reduces to the constant sequence 1,1,1,...... and hence converges to 1

Case (iii):

Let 0 < r < 1

In the case (r^n) is a montonic decreasing sequence and $(r^n) > 0$ for all $n \in N$.

(rn) is monotonic decreasing and bounded below and hence (rn) converges. Let $(r^n) \rightarrow 1$ Since $r^n > 0$ for all n, 1 > 0.(1) We claim that l = 0. Let $\varepsilon > 0$ be given. Since $(r^n) \rightarrow l$, there exists $m \in N$ such that $1 < r^n < 1 + \varepsilon$ for all $n \ge m$. Fix n > m. Then $1 < r^{n+1}$(2) Also $r^{n+1} = r.r^n < r(1+\varepsilon)$(3) $L < r(1+\varepsilon)$ (by 2 and 3). $L < (r/1-r) \varepsilon$. Since this is true every $\varepsilon > 0$, we get $1 \le 0$(4) L=0 (by 1 and 4). Case (iv): Let -1 < r < 0. Then $r^n = (-1)^n |r|^n$ where 0 < |r| < 1. By case (iii) $(|\mathbf{r}|^n) \to 0$. Also ((-1)ⁿ) is a bounded sequence. $((-1)^n | r | ^n)$ converges to 0 (by problem 4 of 3.6)

$$(r^n) \rightarrow 0$$
.
Case (v)
Let $r = -1$.

In this case (rⁿ) reduces to -1,1, -1,..... which oscillates finitely.

Case(vi):

Let r > 1.

Then 0 < 1/r < 1 and hence $(1/r^n) \rightarrow 0$ (case(iii))

 $(r^n) \rightarrow \infty$ (by theorem 3.5)

Case(vii):

Let r<-1.

Then the terms of the sequence (r^n) are alternatively positive and negative. Also |r| > 1 and hence by case (vi) $(|r|^n)$ is unbounded.

(rn) oscillates infinitely.

Thus,

- (i) If r=1, then $(r^n) \rightarrow 1$
- (ii) If r=0, then $(r^n)\rightarrow 0$
- (iii) If 0 < r < 1, then $(r^n) \rightarrow 0$

- (iv) If -1 < r < 0, then $(r^n) \rightarrow 0$
- (v) If r=-1, then oscilating finitely
- (vi) If r>1 then $(r^n)\to\infty$
- (vii) If r<-1 then (rⁿ) oscilating infinitely

2. Show that if |r| < 1 then $(n r^n) \rightarrow 0$.

SOLUTION:

The result is trivial if r=0Let 0<|r|<1.

Then |r|=1/1+p, p>0. $|r|^n=1/(1+p)^n$ $= 1/1+np+\{n(n-1)/1.2\}\,p^2+......$ $< 2/n(n-1)p^2$ $|n\,r^n|< 2/(n-1)p^2$ Now, let $\epsilon>0$ be given.

Then $2/(n-1)p^2<\epsilon$ provided $n>1+2/p^2$ ϵ $|n\,r^n|<\epsilon$ if $n>1+2/p^2$ ϵ . $|m\,r^n|<\epsilon$ if $n>1+2/p^2$ ϵ .

3. Show that $\lim_{n\to\infty} \log n/n^p = 0$ if p>0.

SOLUTION:

But
$$g+1 > \log n$$
 (by(2))

$$\therefore n \geq \, e^m \, \Rightarrow \, g+1 \geq$$

∴
$$\log n/n^p < \varepsilon$$
 provided $n \ge e^m$

$$\therefore \lim_{n\to\infty} \log n/n^p = 0.$$

Problem

Let (a_n) and (b_n) be two sequence of positive terms such that $a_{n+1} = \frac{1}{2}(a_n + b_n)$ and $b_{n+1} = \sqrt{(a_n b_n)}$. Prove that (a_n) and (b_n) convergence to the same limit.

Solution

By hypothesis, a_{n+1} and b_{n+1} are respective the A.M. and G.M. between a_n and b_n .

Also we know that A.M. \geq G.M.

Hence
$$a_{n+1} \ge b_{n+1}$$
(1)

Moreover the A.M. and G.M of two numbers lie between the two numbers.

$$\therefore a_n \ge a_{n+1} \ge b_n \text{ for all } n \in \mathbb{N}. \tag{2}$$

$$\therefore a_n \ge a_{n+1} \ge b_{n+1} \ge b_n$$
 for all $n \in \mathbb{N}$. (by 2 and 3)

 \therefore (a_n) is a monotonic decreasing sequence and (b_n) is a monotonic increasing sequence.

Further, $a_n \ge b_n \ge b_1$ for all $n \in N$.

and
$$b_n \le a_n \le a_1$$
 for all $n \in N$.

 \therefore (a_n) is a monotonic decreasing sequence bounded below by b_1 and (b_n) is a monotonic increasing sequence bounded above by a_1 .

$$(a_n) \rightarrow l \text{ (say) and } (b_n) \rightarrow m \text{ (say)}$$

Now,
$$a_{n+1} = \frac{1}{2}(a_n + b_n)$$
.

Taking limit as $n \to \infty$, we get $l = \frac{1}{2}(l + m)$.

Problem:

Let (a_n) be a sequence of positive terms such that $a_1 < a_2$ and $a_{n+2} = \frac{1}{2}(a_{n+1} + a_n)$. Then show that (a_{2n-1}) is a monotonic increasing sequence and (a_{2n}) is a decreasing sequence and both converge to the common limit $\frac{1}{3}(a_1 + 2a_2)$. Hence deduce that (a_n) converges to the same limit.

Solution:

We have
$$a_{n+2} = \frac{1}{2}(a_{n+1} + a_n)$$
 and $a_1 < a_2 \dots (1)$

$$\therefore a_3 = \frac{1}{2}(a_2 + a_1)$$
 and $a_1 < a_2$.

$$a_1 < a_3 < a_2$$

Also
$$a_4 = \frac{1}{2}(a_3 + a_2)$$
 and $a_3 + a_2$ (by 1 and 2)

$$a_3 < a_4 < a_2$$

$$a_1 < a_3 < a_4 < a_2$$
 (by 2 and 3)

Proceeding as above, we get $a_1 < a_3 < a_5 < a_6 < a_4 < a_2$ and so on.

$$(a_{2n}) \rightarrow l$$
 (say) and $(a_{2n-1}) \rightarrow m$ (say).

Now,
$$a_{2n+2} = \frac{1}{2}(a_{2n+1} + a_{2n})$$
 (by 1)

Taking limit as $n \to \infty$, we get $l = \frac{1}{2}(m+l)$.

$$l=m$$
.

Now, let $\epsilon > 0$ be given. Since $(a_{2n}) \to l$, there exists $n \in N$ such that $|a_{2n} - l| < \epsilon$ for all $n \ge n_1$.

Similarly there exists $n_2 \in N$ such that $|a_{2n-1} - l| < \varepsilon$ for all $n \ge n_2$. Let $m = \max\{n_1, n_2\}$.

Then $|a_n - l| < \epsilon$ for all $n \ge m$.

$$(a_n) \rightarrow l$$
.

Now,
$$a_{n+2} = \frac{1}{2}(a_{n+1} + a_n)$$

$$a_{n+1} = \frac{1}{2}(a_n + a_{n-1})$$
.

.....

$$a_4 = \frac{1}{2}(a_3 + a_2)$$

$$a_3 = \frac{1}{2}(a_2 + a_1)$$

Adding, we get $a_{n+2} + \frac{1}{2}a_{n+1} = \frac{1}{2}(a_2 + 2a_2)$

Taking limit as $n \to \infty$, we get.

$$l + \frac{1}{2}l = \frac{1}{2}(a_1 + 2a_2)$$
 (i.e) $l = \frac{1}{3}(a_1 + 2a_2)$

Problem 12: Prove that the sequencea (an) defined by $a1=\sqrt{k}$ and $a_{n+1} = \sqrt{k} + a_n$ where K>0 converges to root of $x^2-x-k=0$. Solution: First to prove a_n<a_{n+1} for all n∈N We prove this problem by induction on n. $a_2 = \sqrt{k + a_1} = \sqrt{k + k} > \sqrt{k} = a_1$ a2>a1 a1<a2 Assume the result is true for n=m am<am+1 for some mEN. To Prove: The result is true for n=m+1

0000000000000000000000000000000000

Now,
$$a_{m+2}=\sqrt{k}+a_{m+1}>\sqrt{k}+a_{m}=a_{m+1}$$

: (an) is a monotonic increasing sequence

To Prove:

(a_n) is bounded above

Now, $a_{n+1}>a_n$

Scanned by TapScanner

Let $b_n = a_1 + a_2 + \dots + a_n / n$

Let $\varepsilon>0$ be given since $(a_n)\to 0$ there exists mEN such that $|a_n|<\varepsilon/2$ for all $n \ge m$ (1)

Let n≥m

$$|b_n| = |a_1 + a_2 + a_3 + \dots + a_m + a_{m+1} + \dots + a_n/n|$$

 $\leq |a_1| + |a_2| + \dots + |a_m| + |a_{m+1}| + \dots + |a_n|/n$

$$=k/n+|a_{m+1}+a_{m+2}+....+a_n|/n$$

Now since $(k/n)\to 0$ there exists $n_o \in N$ such that $k/n < \epsilon/2$ for all $n \ge n_o$

Let n₁=max{m,n_o}

Then |b_n|<ε for all n≥n₁ (by&3)

 \therefore $(b_n) \rightarrow 0$

Case(ii):

I≠0

Since (a_n)→I, (an-l)→0

$$((a_1-l)+(a_2-l)+....+(a_n-l)/n)\to 0$$
 (by case (i))

 $(a_1+a_2+....+a_n-nl/n)\to 0$

Hence the proof.

If
$$(a_n) \rightarrow a$$
 and $(b_n) \rightarrow b$ then $(a_1bn+a_2b_{n-1}+....+a_nb_1/n) \rightarrow ab$.

Proof:

Put
$$a_n=a+r_n$$
 so that $(r_n)\to 0$

Then
$$c_n = ((a+r_1)b_n+(a+r_2)b_{n-1}+....+(a+r_n)b_1/n)$$

$$=a(b_1+b_2+....+b_n)/n+r_1 b_n+....+r_n b_1/n$$

Now By Cauchy first limit thorem

$$(b_1 + b_2 + \dots + b_n)/n \rightarrow b$$

$$a(b_1+b_2+....+b_n)/n \rightarrow ab$$

Hence it is enough if we prove that

$$r_1$$
 $b_n+....+r_n$ $b_1/n\rightarrow 0$

Now since $(b_n) \rightarrow b$, (b_n) is a bounded sequence.

.: There exists a real number k>0 such that |b_n| ≤k for all n.

$$| r_1 b_n + \dots + r_n b_1/n | \le |r_1 + r_2 + \dots + r_n|/n$$

Since
$$(r_n) \rightarrow 0$$
, $(r_{1n}+.....+r_{n1}/n) \rightarrow 0$.

$$(r_1 b_n + + r_n b_1/n) \rightarrow 0$$

Hence the proof.

Cauchy's & Second limit theorem

Theorem 3.24:

Let (a_n) be a sequence of positive terms. Then $\lim_{n\to\infty} a_{n+1}/a_n$ Provided the limit on the right hand side exist, whether finite (or) infinite.

Proof:

Case(i):

 $\lim_{n\to\infty} a_{n+1}/a_n = l_1$ finite

Let €> 0 be any given real number.

Then there exist m \in N. Such that $l - 1/2 \in <$ an+1/an < $l+2 \in$ for all n ≥ m.

```
Now, choose n \ge m,
1 - 1/2 €< am+1/am < 1+1/2€
1 - 1/2 €< am+2/am < 1+1/2€
:::::-----::::::
l -1/2 €< an/an-1 < l+1/2€
Multiplying these inequalities we obtain,
(1-1/2\mathbb{E})^{n-m} < a_n/a_m < (1+1/2\mathbb{E})^{n-m}
   am (l-1/2€)^n/(l-1/2)^m < an < am (l+1/2€)^n/(l-1/2)^m
(1+/2€)<sup>m</sup>
   k1 (l-1/2€)^n < an < k2 (l+1/2€)^n
Where k1,k2 are same constants.
Therefore, k1^{1/n} (l-1/2€) < an ^{1/n} < k2^{1/n}
(l+1/2€)
Therefore, now, (k1^{1/n} (l-1/2€)) -> l-1/2€.
[(k1)^{1/n} -> 1]
Therefore, there exist n1 € N such that
(1-1/2\mathbb{E}) - 1/2\mathbb{E} < k1^{1/n} (1-1/2\mathbb{E}) < (1-1/2\mathbb{E}) +
```

k1 (l-1/2€)
n
 < an < k2 (l+1/2€) n Where k1,k2 are same constants. Therefore, k1 $^{1/n}$ (l-1/2€) < an $^{1/n}$ < k2 $^{1/n}$ (l+1/2€) Therefore, now, (k1 $^{1/n}$ (l-1/2€)) -> l- 1/2€. [(k1) $^{1/n}$ -> l] Therefore, there exist n1 € N such that (l-1/2€) - 1/2€ < k1 $^{1/n}$ (l-1/2€) < (l-1/2€) + 1/2€ + n ≥ n1. l-€^{1/n} (l-€/2)n_2€N such that, (l+1/2€) - 1/2€ < k2 $^{1/n}$ (l+1/2€) < (l+1/2€) + 1/2€ + n ≥ n1. Let m=max{n1,n2}

Then l- €^{1/n} (l-1/2€) < an $^{1/n}$ < k2 $^{1/n}$ (l+1/2€)^{1/n} < l+€ $^{1/n}$ hence(a $^{1/n}$)

Case(ii): lim $_{n\to\infty}$ a $_{n+1}$ /a $_n$ =∞

Then lim $_{n\to\infty}$ (1/a $_{n+1}$)/(1/a $_n$)=∞
by case (i) (1/a $_n$)-> ∞

Theorem 3.25:

Let (a_n) be any sequence and $\lim_{n\to\infty} |a_n/a_{n+1}|=1$ if l>1 then $(a_n)->0$

Proof:

Let K be any real no, such that |<K<1|

Since $\lim_{n\to\infty} |a_n/a_{n+1}|=l$, there exists $m\in\mathbb{N}$ such that $l-\mathbb{C}<|a_n/a_{n+1}|< l+\mathbb{C}$

Choosing €=l-k we obtain |a_n /a_{n+1}|>k

Now fix n≥m. then,

$$|a_m/a_{m+1}| > k$$
; $|a_{m+1}/a_{m+2}| > k$; $|a_{n-1}/a_{n>k}|$

Multiplying the above inequalities we get,

$$|a_m/a_n| > k^{n-m}$$

$$|a_n/a_m| \le k^m (1/k)^n$$

$$|a_n| < k^m |a_m| (1/k)^n$$

 $|a_n| < Ar^n$ where $A = |a_m| k^m$ is a constant and r=1/k

Now k > 1 - > 0 < r < 1.

$$(a^n)->0$$

The above theorem is true even if $l=\infty$.

Theorem 3.26:

Let (a_n) be any sequence of the terms and $\lim_{n\to\infty} (a_n/a_{n+1})=1$. If 1<1 then $(a_n)->0$

Proof:

Let K be any real no, such that |<K<1|

Since $\lim_{n\to\infty} |a_n/a_{n+1}|=l$, there exists $m\in\mathbb{N}$ such that $l-\ell<|a_n/a_{n+1}|< l+\ell$

Choosing €=l-k we obtain |a_n /a_{n+1}|>k

Now fix n≥m. then,

$$|a_m/a_{m+1}| > k$$
; $|a_{m+1}/a_{m+2}| > k$; $|a_{n-1}/a_{n>k}|$

Multiplying the above inequalities we get,

$$|a_m/a_n| > k^{n-m}$$

$$|a_n/a_m| \le k^m (1/k)^n$$

$$|a_n| < k^m |a_m| (1/k)^n$$

 $|a_n| < Ar^n$ where $A = |a_m| k^m$ is a constant and r=1/k

Now k > 1 - > 0 < r < 1.

$$(a^n)->0$$

The above theorem is true even if $l=\infty$.

Theorem 3.27:

If the sequences (a_n) and (b_n) converge to 0 and (b_n) is strictly monotonic decrasing then $\lim_{n\to\infty} (a_n/b_n) = \lim_{n\to\infty} (a_n-a_{n+1}/b_n-b_{n+1})$ provided the limit on the right hand side exists whether finite or infinite.

Proof:

Case(i):

Let $\lim_{n\to\infty} (a_n - a_{n+1}/b_n - b_{n+1}) = l$, finite let $\mathbb{C}>0$ be given . then there exists $m \in \mathbb{N}$ such that ,

L1-€<
$$a_{n-1}$$
 a_{n+1} b_{n-1} b_{n+1} < $l+€$

Since $b_n-b_{n+1}>0$, we get

$$(b_n-b_{n+1})(1-\epsilon) < a_n-a_{n+1} < (b_n-b_{n+1})(1+\epsilon)$$

Let $n > p \ge m$

Then
$$(b_p-b_{p+1})$$
 $(l-€) < a_p-a_{p+1} < (b_n-b_{n+1})$ $(l+€)$ $(b_{p+1}-b_{p+2})$ $(l-€) < b_{p+1}-b_{p+2} < (a_{p+1}-a_{p+2})$ $(l+€)$

$$(b_{n-1}-b_n)(l-\ell) < a_{n-1}-a_n < (b_{n-1}-b_n)(l+\ell)$$

Adding the above inequalites we get,

$$(b_p-b_n)(1-\epsilon) < a_p-a_n < (b_p-b_n)(1-\epsilon)$$

Taking limit as n->∞; we get,

$$(b_p)$$
 (l-€) < a_p < b_p (l+€) (therefore (a_n), (b_n)->0)

Therefore l-€< a_p/b_p < l+€

Therefore |a_p/b_p-i| < €

Therefore $\lim_{n\to\infty} (a_n/b_n)=1$

Case(ii):

$$\lim_{n\to\infty} (a_n - a_{n+1}/b_n - b_{n+1}) = \infty$$

Let k > 0 be any real no. then there exists m $\in \mathbb{N}$ such that $a_n - a_{n+1}/b_n - b_{n+1} > k$ for all $n \ge m$.

Therefore $a_{n-1} - a_{n+1} > (b_{n-1} - b_{n+1}) k$

let n >p ≥m

writing the inequalities for n=p,p+1,....,n and adding we get,

$$a_p - a_n > k (b_p - b_n)$$

Taking limit as n->∞, we get

Therefore a./b.≥k for all p≥m

$$\lim_{n\to\infty} (a_n - a_{n+1}/b_n - b_{n+1}) = \infty$$

Let k > 0 be any real no. then there exists m $\in \mathbb{N}$ such that $a_n - a_{n+1}/b_n - b_{n+1} > k$ for all $n \ge m$.

Therefore $a_{n-1} - a_{n+1} > (b_{n-1} - b_{n+1}) k$

let n >p ≥m

writing the inequalities for n=p,p+1,....,n and adding we get,

$$a_p - a_n > k (b_p - b_n)$$

Taking limit as n->∞, we get

Therefore a_p/b_p≥k for all p≥m

Therefore (a_n/b_n) converges to ∞

Note:

The above theorem is true ever if l=∞

Let
$$a_n = \frac{1}{n}[(n+1)(n+2)....(n+n)]^{\frac{1}{n}}$$

$$= [\frac{(n+1)(n+2)....(n+n)}{n^n}]^{1/n}$$

$$= [\left(1 + \frac{1}{n}\right)\left(1 + \frac{2}{n}\right)...\left(1 + \frac{n}{n}\right)]^{\frac{1}{n}}$$
Let $b_n = (1 + \frac{1}{n})(1 + \frac{2}{n}).....(1 + \frac{n}{n})$
So that $a_n = b_n^{\frac{1}{n}}$
 $b_{n+1} = (1 + \frac{1}{n+1})(1 + \frac{2}{n+1}).....(1 + \frac{n+1}{n+1})$
now $\frac{b_{n+1}}{b_n} = \frac{\left(1 + \frac{1}{n+1}\right)\left(1 + \frac{2}{n+1}\right).....(1 + \frac{n+1}{n})}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{2}{n}\right).....(1 + \frac{n}{n})}$

$$= (2n+1)(2n+2)\frac{n^n}{(n+1)^{n+2}}$$

$$= \frac{2(2n+1)}{n+1}.\frac{n^n}{(n+1)^n}$$

$$= 2(\frac{2 + \frac{1}{n}}{1 + \frac{1}{n}}).\frac{1}{(1 + \frac{1}{n})^n}$$

Problem 5:

Show that
$$\lim_{n\to\infty} n!/n^n=0$$

Solution:

Let
$$a_n = n!/n^n$$

$$|a_n/a_{n+1}| = n!/n^n (n+1)^{n+1}/(n+1)!$$

$$=(n+1/n)^n$$

$$=(1+1/n)^n$$

$$\lim_{n\to\infty} |a_n/a_{n+1}| = \lim_{n\to\infty} (1+1/n)^n$$

>1

Therefore $(a_n) \rightarrow 0$ (by theorem 3.25) Scanned by TapScanner

Subsequences

Definition:

Let(a,) be a sequences. Let (n,) be a strictly increasing sequence of natural numbers. Then (a,) is called a subsequences of (a,).

Note:

The terms of a subsequence occur in the same order in which they occur in the original sequence.

Examples:

- (a_{ix}) is a subsequences of any sequences(a_i). Note that in this example the internal between any two terms of the subsequence is the same, (i.e) n1=2, n2=4, n3=6, nk=2k
- (a_{n2}) is a subsequence of any sequence (a_n) hence a_{n2}=a1, a_{n2}=a4, a_{n2}=a9...... here the
 interval between two successive terms of the subsequence goes on increasing as k
 becomes large. Thus the interval between various terms of a subsequence need not be
 regular.
- Any sequence(a_n) is a subsequence of itself.
- Consider the sequence(a_n) given by 1,0,1,0... Now, (b_n), given by 1,1,1.... is a
 subsequence of (a_n), hence (a_n) is not converges to 1. Thus a subsequence of nonconvergent sequence can be a convergent sequence.

Note:

A subsequence of a given subsequence (a,) of a sequence (a,) is again a subsequence of (a,).

Theorem 3.28:

If a sequence (a,) converges to l. then every subsequence (a,) of (a,) also converges to l.

Proof:

Let € > 0 be given.

Since (a,)->I there exists mEN such that

|a,-l|< € for all n≥ m

Now choose $n_k \ge m$.

Then $k \ge k_0 - n_k \ge n_{k0}$

 $n \ge m$

|a_n-1|< € (by (1))

Thus $|a_n-l| \le f$ or all $k \ge k_0$

Therefore (a_{ak})→1

Note I:

If a subsequence of a sequence converges then the original sequence need not converges (refer examples 4)

Note 2:

If a sequence(a_n) has two subsequence converges to two different limit, then (a_n) close not converge for example. Consider the sequence(a_n) given by

A={yn if n is even, 1+1/n if n is odd

Here the subsequence(a_{2n-1}) and the subsequence (a_{2n-1}) 1. Hence the given sequence (a_n) does not converge.

THEOREM: 3.29

If the subsequence (a_{2n-1}) and (a_{2n}) of a sequence (a_n) converge to the same limit I then (a_n) also converges to

SOLUTION:

Let $\varepsilon > 0$ be given. Since $(a_{2n-1}) \rightarrow l$ there exists $n_1 \in \mathbb{N}$ such that $|a_{2n-1}-l| < \varepsilon$ for all $2n-1 \geq n_1$.

Similarly there exists $n_2 \in \mathbb{N}$ such that $|a_{2n}-l| < \epsilon$ for all $2n \ge n_1$.

Let $m = \max\{n_1, n_2\}$.

Clearly |an-1| < for all n≥m.

 $: (a_n) \rightarrow l$

NOTE:

The above result is true even if we have I=00 or -00

DEFINITION:

Let (a_n) be k sequence. A natural number m is called a peak point of the sequence (a_n) if $a_n < a_m$ for all n > m.

EXAMPLE:

- 1. For the sequence (1/n), every natural number is a peak point and hence the sequence has infinite
 - number of peak points. In general for k strictly monotonic decreasing sequence every natural number is a peak point.
 - 2. Consider the sequence 1 = - 1, -1, -1, -1, -1 Here 1,2,3

are the peak point of the sequence.

3. The sequence 1, 2, 3, has no peak point. In general k monotonic increasing sequence has no peak point.

THEOREM: 3.30

Every sequence (a_n) has a monotonic subsequence.

PROOF:

Case(i)

(an) has infinite number of peak points.

Let the pea point be $n_1 < n_2 < \dots < n_k < \dots$

Then $a_{n1} > a_{n2} > \dots > a_{nk} > \dots$

: (ank) is a monotonic decreasing subsequence of (an).

Case(ii):

(a_n) has only k finite number of peak points or no peak point.

Choose a natural number n_1 such that there is no peak point greater than or equal to n_1 . Since is n_1 is not a peak point of (a_n) , there exists $n_2 > n_1$ such that $a_{n2} \ge a_{n1}$. Again since n_2 is not a peak point, there exists $n_3 > n_2$ such that $a_{n3} \ge a_{n2}$.

Repeation this process we get a monotonic increasing subsequence (ank) of (an).

THEOREM: .3.31

Every bounded sequence has a convergent subsequence.

PROOF:

Let (a_n)be a bounded sequence let (a_{nk}) be k monotonic subsequence of (a_n).

Since (an) is bounded (ank) is also bounded.

- : (ank) is k bounded monotonic sequence and hence converges.
 - : (ank) is k convergent subsequence of (an).

3.10 LIMIT POINTS

Definition. Let (a_n) be a sequence of real numbers a is called a limit point or a cluster point of the sequence (a_n) if given $\varepsilon > 0$, there exists infinite number of terms of the sequence in $(a - \varepsilon, a + \varepsilon)$. If the sequence (a_n) is not bounded above then ∞ is a limit point of the sequence. If (a_n) is not bounded below then $-\infty$ is a limit point of the sequence.

Examples.

 Consider the sequence 1, 0, 1, 0, ... For this sequence 1 is a limit

point since given $\varepsilon > 0$, the interval $(1 - \varepsilon, 1 + \varepsilon)$ contains infinitely many terms $a_{1,}a_{3,}a_{5,}\ldots$ of this sequence. Similarly 0 is also a limit point of this sequence.

2. If a sequence (a_n) converges to l then l is a point of the Sequences. For, given $\varepsilon > 0$, there exists $m \in \mathbb{N}$ such that $a_n \in (1 - \varepsilon, 1 + \varepsilon)$ for all

 $n \ge m$.

- $(l \varepsilon, l + \varepsilon)$ contains infinitely many terms of the sequences.
- **3.** The sequences $(a_n)=1, 2, 3, \ldots, n \ldots$ is not bounded above and hence ∞ is a limit point.
- **4.** The sequence $(a_n)=1, -1, 2, -2, \ldots, n, -n, \ldots$ is Neither bounded above nor bounded below. Hence ∞ and $-\infty$ are limit points of the sequence.

Theorem 3.32

Let (a_n) be a sequence. A real number a is a limit point of (a_n) iff there exists a subsequence (a_{nk}) of (a_n) converging to a.

Proof. Suppose there exists a subsequence (a_{nk}) of (a_n) converging to a.

 $(a - \varepsilon, a + \varepsilon)$ contains infinitely many terms of the sequence (a_n) .

 \therefore a is a limit point of the sequence (a_n) .

Conversely suppose a is a limit point of (a_n) .

Then for each $\varepsilon > 0$ the interval $(a - \varepsilon, a + \varepsilon)$ contains infinitely many terms of the sequence. In particular we can find $n_1 \in N$ such that $a_{n1} \in (a-1;a+1)$.

Also we can find $n_2 > n_1$ such that $a_{n2} \in \left(a - \frac{1}{2}, a + \frac{1}{2}\right)$

Proceeding like this we can find natural numbers $n_1 < n_2 < n_3 \dots$ such that $a_{nk} \in \left(a - \frac{1}{k}, a + \frac{1}{k}\right)$.

Clearly (a_{nk}) is a subsequence of (a_n) and $|a_{nk-a}| < \frac{1}{k}$.

For any
$$\varepsilon > 0$$
, $|a_{nk-\alpha}| < \varepsilon$ if $k > \frac{1}{\varepsilon}$.

$$\therefore (a_{nk}) \rightarrow a.$$

Theorem 3.33

Every bounded sequence has at least one limit point.

Proof. Let (a_n) be a bounded sequence. Then there exists a convergent subsequence (a_{nk}) of (a_n) converging to I. Hence I is a limit point of (a_n) .

Note. In general every sequence (a_n) has at least one limit point (finite or infinite).

Theorem 3.34

A sequence (a_n) converges to I iff (a_n) is bounded and I is the only limit point of the sequence. **EEE**

Proof. Let $(a_n) \rightarrow l$. Then (a_n) is bounded.

Also I is a limit point of the sequence (a_n) .

Now suppose l_1 is any other limit point of (a_n) . Then there exists a subsequence (a_{nk}) of (a_n) such that $(a_{nk}) \rightarrow l_1$.

Now, since
$$(a_n) \rightarrow l$$
, we have $(a_{nk}) \rightarrow l$.
 $\therefore l = l_1$.

Thus I is the only limit point of the sequence.

Since (a_n) is a bounded sequence, (a_{nk}) is also a bounded sequence. Hence (a_{nk}) has also a limit point by theorem 3.33, say l' and $l' \neq l$.

 a_n : a_n) has two limit points a_n and a_n which is a contradiction. Hence $a_n \to a_n$.

CAUCHY SEQUENCE

Definition. A sequence (a_n) is said to be a Cauchy sequence if given $\varepsilon > 0$, there exists $n_0 \in N$ such that $|a_n - a_m| < \varepsilon$ for all n, $m m \ge n_0$.

Note. In the above definition the condition $|a_n - a_m| < \varepsilon$ for all $n, m \ge n_0$ can be written in the following equivalent form, namely, $|a_{n+p} - a_n| < \varepsilon$ for all $n \ge n_0$ and for all positive integers p.

Examples.

1. The sequence $\left(\frac{1}{n}\right)$ is a Cauchy sequence.

Proof. Let $(a_n) = \left(\frac{1}{n}\right)$. Let $\varepsilon > 0$ be given.

Now,
$$|a_n - a_m| = \left| \frac{1}{n} - \frac{1}{m} \right|$$
.

: If we choose n_0 to be any positive integer greater than we get $|a_n-a_m|<\varepsilon$ for all n, $m\geq n_0$.

 $\therefore \left(\frac{1}{n}\right) \text{ is a Cauchy sequence.}$

Example: 2

The sequence [(-1)ⁿ] is not a cauchy sequence Proof:

Let
$$(a_n) = \{ (-1)^n \}$$

$$||a_n - a_{n+1}|| = 2$$

: If $\epsilon < 2$, we cannot find n_0 , such that $|a_n - a_{n+1}| < \epsilon$ for all $n \ge n_0$

∴[(-1)ⁿ] is not a cauchy sequence.

Example: 3

(n) is not a cauchy sequence

Proof:

Let
$$(a_n) = (n)$$

$$|a_n - a_m| \ge 1$$
 if n= m

∴ If we choose ε < 1,we cannot find n_0 such that $|a_n-a_m|<\varepsilon$ for all $n,m\ge n_0$. (n) is not a cauchy sequence.

Theorem 3:35

Any convergent sequence is a cauchy sequence.

Proof:

Let $(a_n) \rightarrow I$. Then given $\epsilon < 0$, there exists $n_0 \epsilon N$ such that $|a_n - I| < \frac{1}{2} \epsilon$ for all $n \ge n_0$.

$$||a_n - a_m|| = ||a_n - I + I - a_m||$$

 $|| \le ||a_n - I|| + ||I - a_m||$
 $|| \le ||a_n - I|| + ||I - a_m||$
 $|| \le ||a_n - I|| + ||I - a_m||$

:(an) is a cauchy sequence.

Theorem: 3:36

Any cauchy sequence is abounded sequence.

Proof:

Let(an) be a cauchy sequence.

Let $\epsilon > 0$ be given ,then there exists $n_0 \epsilon N$ such that

$$|a_n - a_m| < \varepsilon$$
 for all $n, m \ge n_0$.

$$|a_n| < |a_{n0}| + \varepsilon$$
 for all $n \ge n_0$.

Now, let $k = \max\{|a_1|, |a_2|, |a_{n0}| + \epsilon\}$ Then $|a_n| \le k$ for all n. Hence (a_n) is a bounded sequence

Theorem:3:37

Let (a_n) be a cauchy sequence .If (a_n) has a subsequence (a_{nk}) convering to I,then $(a_n) \rightarrow I$ Proof:

Let ε < 0 be given ,then there exists $n_0 \varepsilon N$ such that

$$|a_n - a_m| < \frac{1}{2} \epsilon \text{ for all } n, m \ge n_0$$
 $\rightarrow ①$

Also since $(a_{nk}) \rightarrow I$, there exists $k_0 \in \mathbb{N}$ such that $|a_{nk}-1| < \frac{1}{2} \in \mathbb{N}$ for all $k \le k_0$ \Rightarrow (2)

Choose n_k such that $n_k \ge n_{k0}$ and n_0

Then
$$|a_n-I|=|a_n-a_{nk}+a_{nk}-I|$$

$$\leq |a_n-a_{nk}|+|a_{nk}-I|$$

$$< \frac{1}{2}\epsilon + \frac{1}{2}\epsilon = \epsilon \text{ for all } n \geq n_0.$$
Hence $(a_n) \rightarrow I$.

Theorem:3:38

(cauchy's general principal of convergence). A sequence (a_n) in R is convergent iff it is a cauchy sequence.

Proof:

Let $(a_n) \rightarrow I$, then given $\epsilon > 0$, there exists $n_0 \epsilon N$ such that $|a_n-I| < \frac{1}{2} \epsilon$ for all $n \ge n_0$.

$$|a_n - a_m| = |a_n - 1 + 1 - a_m|$$

≤ $|a_n - 1| + |1 - a_m|$
< ½ $\epsilon + \%$ ϵ for all $n, m \ge n_0$.

∴ (a_n) is a cauchy sequence ,that any convergent Sequence is a cauchy sequence.

Conversely,let (a_n) be a cauchy sequence in R.

(a_n) is a bounded sequence, we know that "Any

Cauchy sequence is a bounded sequence".

:There exists a subsequence (a_{nk}) of (a_n) such that $(a_{nk}) \rightarrow I$, we know that "Every bounded sequence has a convergent sequence".