
 



                                                                 Name: P.Pondeepa 

                   Reg.no: 20182131517127 

 

ELEMENTARY TRANSFORMATIONS 

Definition: 

Let A be an m×n matrix over a field F. An elementary row-operation on 

A is of any one of the following three types. 

• 1. The interchange of any two rows. 

• 2. Multiplication of a row by a non-zero element c in F. 

• 3. Addition of any multiple of one row with any other row. 

Similarly we define an elementary column operation on A as any one of the 

following three types. 

• 1 .The interchanges of any two columns. 

• 2. Multiplication of a column by a non-zero element c in F. 

• 3. Addition of any multiple of one column with any other column. 

Example:  

Let A=(
1 2
2 1
3 −1

 ), A1=(
3 −1
2 1
1 2

) , A2=(
2 2
4 1
6 −1

), A3=(
1 2
5 7
3 −1

).  

A1 is obtained from A by interchanging the first and third rows. 

          A2 is obtained from A by multiplying the first column of A by 2. 

         A3 is obtained from A by adding to the second row the multiple by 3 of the 

first row. 

 



Notation: 

 We shall employ the following notations for elementary transformation. 

I. Interchange of ith and jth rows will be denoted by Ri ↔ Rj 

II. Multiplication of ith row by a non-zero element c ∈ 𝐹will be denoted 

by Ri → cRi. 

III. Addition of  k times the jth  row to  the ith  row will be denoted by Ri →

 Ri + kRj. 

The corresponding column operations will be denoted by writing C in the 

place of R. 

Definition: 

An m×n matrix B is said to be row equivalent (column equivalent) to an 

m×n matrix A if B can be obtained from A by a finite succession of elementary 

row operations (column operations). 

A and B are said to be equivalent if B can be obtained from A by a finite 

succession of elementary row or column operations. 

If A and B are equivalent. We write A ~ B. 

Definition: 

A matrix obtained from the identity matrix by applying a single 

elementary row or column operation is called an elementary matrix. 

      For example,(
0 1 0
1 0 0
0 0 1

)  (
4 0 0
0 1 0
0 0 1

)  (
1 0 0
0 1 0
0 2 1

)  are elementary 

matrices obtained from the identity matrix  (
1 0 0
0 1 0
0 0 1

) by applying the 

elementary operations R1↔ R2, R1→ 4R1, R3→R3+2R2 respectively. 
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Theorem:7.23

Anyelementarymatrixisnon-singular.

Proof:

Thedeterminantoftheidentitymatrixofanyorderis1.Hencethe
determinantofanelementarymatrixobtainedbyinterchanginganytwo
rowsis-1.Thedeterminantofanelementarymatrixobtainedbymultiplying
anyrowbyk≠0isk.Thedeterminantofanelementarymatrixobtainedby
addingamultipleofonerowwithanotherrowis1.Henceanyelementary
matrixisnon-singular.

Theorem:7.24

LetAbeanmxnmatrixandBbeannxpmatrix.Theneveryelementary
row(column)operationoftheproductABcanbeobtainedbysubjectingthe
matrixA(matrixB)tothesameelementaryrow(column)operation.

Proof:

LetR1,R2,……Rm denotetherowsofthematrixAandC1,C2,….,Cp
denotethecolumnofB.Bythedefinitionofmatrixmultiplication.

AB=[
R1C1 R1C2 ⋯ R1Cp

⋮ ⋮ ⋮
RmC1 RmC2 ⋯ RmCp]

Itisobviousfrom theaboverepresentationofABthatifweapplyany
elementaryrowoperationonAthematrixABisalsosubjectedtothesame
elementaryrowoperation.Alsoifweapplyanyelementarycolumn
operationonBthematrixABisalsosubjectedtothesameelementary
columnoperation.

Theorem:7.25

EachelementaryrowoperationonanmxnmatrixAisequivalentto
pre-multiplyingthematrixAbythecorrespondingelementarymxm matrix.

Proof:



SinceAisanmxnmatrixwecanwriteA=IAwhereIistheidentitymatrix
oforderm.Bythm 7.24anelementaryrowoperationIAisequivalenttothe
samerowoperationonI.ButanelementaryrowoperationonIgivesan
elementarymatrix.Hencebypre-multiplyingAbythecorresponding
elementarymatrixwegettherequiredrowoperationonA.

Note.

SimilarlyeachelementarycolumnoperationofanmxnmatrixAis
equivalenttopostmultiplyingthematrixAbythecorresponding
elementarynxnmatrix.

Corollary1.

IftwomxnmatricesAandBarerowequivalentthenA=PBwherePisa
non-singularmxm matrix.

Proof:

SinceAisrowequivalenttoB,Acanbeobtainedfrom Bbyapplying
successiveelementarynowoperations.HenceA=E1E2…….EnBwhereeach
Eiisanelementarymatrix.SinceeachEiisnon-singular.A=PBwhere
P=E1E2…..Enandpisnon-singular.

Corollary2.

IftwomatricesAandBarecolumnequivalentthenA=BQwhereQisa
non-singularmatrix.

Corollary3.

IftwomxnmatricesAandBequivalentthenA=BQwherepisanon-
singular.mxm matrixandQisanon-singularnxnmatrix.

Corollary4.

Theinverseofanelementarymatrixisagainanelementarymatrix.

Proof:

LetEbeanelementarymatrixobtainedfrom Ibyapplyingsome
elementaryoperations.IfweapplythereverseoperationonE,thenEis
carriedbacktoI.LetE*betheelementarymatrixcorrespondingtothe
reverseoperation.



ThenE*E=EE*=I.HenceE*=E-1

HenceE-1isalsoanelementarymatrix.
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Canonical form of a matrix:  

We now use elementary row and column operations to reduce any matrix 

to a simple form, called the canonical  form of a matrix. 

Theorem 7.26: 

By successive applications of elementary row and column operations, any 

non-zero m × n matrix A can be reduced to a diagonal matrix D in which the 

diagonal entries are either 0 or 1 and all the 1’s proceeding all the zeros on the 

diagonal. In otherwords, any non-zero m × n matrix is equivalent to a matrix of 

the form [ 
𝐼𝑟 0
0 0 

] where 𝐼r is the r × r identity matrix and 0 is the zero matrix.                      

 Proof: 

We shall prove the theorem by induction on the number of rows of A. 

Suppose a has just one row. 

Let A = (𝑎11𝑎12…….𝑎1𝑛). 

Since A ≠ 0, by interchanging columns, if necessary, we can bring a non-

zero entry  c to the position 𝑎11. 

Multiplying A by 𝑐−1 we get 1 as the first entry. 

Other entries in A can be made zero by adding suitable multiples of 1. 

Thus the result is true when m = 1 

Now, suppose that the result is true for any non-zero matrix with m − 1 

rows. 

Let A be a non-zero m × n matrix. By permuting rows and columns we 

can bring some non-zero entry c to the position 𝑎11. 

Multiplying the first row by 𝑐−1 we get 1 as the first entry. 

All other entries in the first column can be made zero by adding suitable 

multiples of the first row to each other row. 



Similarly all the other entries in the first row can be made zero. 

This reduces A to a matrix of the form B = [ 
𝐼1 0
0 𝐶

 ] where C is the (m −

1) × (m − 1) matrix. 

Now by induction hypothesis C can be reduced to the desired form by 

elementary row and column operations. 

Hence A is equivalent to a matrix of the required form. 

Corollary: 1 

 If A is an m × n matrix there exist non-singular square matrices P and Q 

of order m and n respectively such that PAQ =  [ 
𝐼𝑟 0
0 0

 ] 

The result follows from corollary 3 of the theorem 7.25 

Corollary: 2 

 Any non-singular square matrix A of order n is equivalent to the identity 

matrix. 

Proof: 

 By corollary 1, PAQ =  [ 
𝐼r 0
0 0

 ] 

Since P, A, Q are all non-singular   [ 
𝐼r 0
0 0

 ] is non-singular.  

This is possible iff  [ 
𝐼r 0
0 0

 ] = In. 

Corollary: 3 

Any non-singular matrix A can be expressed as a product of elementary 

matrices. 

Proof: 

By corollary 2, PAQ = In   

Hence A = P−1Q−1.  

Further by corollary 4 of theorem 7.25, P−1 and Q−1 are products of elementary 

matrices. 

 Hence A is a product of elementary matrices. 



Note: 

 The inverse of anon-singular matrix A can be computed by using 

elementary transformations. Let A be a non-singular matrix of order n. Then 

AA−1 =  A−1A = I. Now the non-singular matrix A−1 can be expressed as a 

product of elementary matrices. 

Let  A−1 = E1E2 …… En. 

Then I = A−1A = E1E2 …… EnA. 

Thus every non-singular matrix A can be reduced to I by pre-multiplying 

A by elementary matrices. 

Hence A can be reduced to the identity matrix by applying successive 

elementary row operations. 

Now, A = I A. Reduce the matrix A in the left hand side to I by applying 

successive elementary row operations and apply the same elementary row 

operations to the factor I in right hand side. 

Then we get I = B A so that B = A−1 
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Solved problem 

Problem 1. Reduce the matrix A =[
    
   
    

] to the canonical form. 

Solution.    

                   A = [
    
   
    

]  

                      ᷉[
    
    
   

]   R2→ R2- R1 ; R3→R3  -2R1 

 

                ᷉          ᷉[
   
    
   

]         C3→ C3 +3C2 ; C3→ C3 +C1 

                       ᷉[
   
   
   

]    R2→  - R2 

 

Problem 2.    Find the  inverse of the matrix  A=[
   
    
    

]  

Solution. 

                    [
   
    
    

]  =[
   
   
   

] A 

                   →  [
   
    
   

] = [
   
    
   

]  A, R2→ R2 -3R1 ;R3→R3 +2R1  



 

                   →[
   
    
    

] = [
   
    
    

]  A,   R3→ R3 –R2 

                  →  [
   
   
   

]  = 

[
 
 
 
 
 

 

 

 

  

 
  

 

 

 

 

 
 

  

  

  

 

  ]
 
 
 
 

    R1→ R1 -
 

 
 R3 ; R2+

 

 
R3 ; R3→

 

  
 R3 

                 → A
-1

 =

[
 
 
 
 

 

 

 

 

 
 
 

 
 

 

 

 

 

 
 

  
 

 

  

 

  ]
 
 
 
 

    

Definition:  Let A and b be two square matrices of order n. B said to be similar 

to A if there exists a n×n non – singular matrix P such that B=P
-1

AP. 

Solved Problems 

Problem 1 Similarity of matrices is  an equivalence relation in the set of all n×n 

matrices. 

Proof 

Let S be the set of all n×n matrices. 

Let A ϵ S. 

Since A=I
-1

AI and I is non-singular, A is similar to A. 

Hence similarity of matrices is reflexive. 

Now, let A,B ϵ S and let A be similar to B. 

A=P ؞
-1

BP ,where PϵS is a non-singular matrix. 

Now, P
-1

BP=A→PP
-1

BPP
-1

=PAP
-1 

   
   →B=PAP

-1
 

     →B=(P
-1

)
-1

A(P
-1

). 

Since P is non-singular P
-1

 ϵ S is also non-singular. 

 .B is similar to A؞

Hence similarity to matrices is symmetric. 



 

Now, let A,B,C ϵ S. 

Let A be similar to B , B be similar to C. Hence there exists non-singular 

matrices P,Q ϵ S such that  

A=P
-1

BP and B=Q
-1

CQ. 

Now, A=P
-1

BP 

   =P
-1

(Q
-1 

CQ)P 

   =(P
-1

Q
-1

)CQP 

   =(QP)
-1

C(QP) 

Since P,Q ϵ S are non-singular ,QP ϵ S is also non-singular. 

Hence A is similar to C. 

  .Similarity of matrices is transitive ؞

Hence similarity of matrices is an equivalence relation. 

 

Problem 2 If  A and B are similar matrices show that their determinants are 

same. 

Solution   

Let A and B be two similar matrices. 

There exists a non-singular matrix P such that B=P ؞
-1

AP. 

Now, |B|=|P
-1

AP| 

     =|P
-1

||A||P| 

     =|A| (since|P
-1

|=
 

   
) 

Hence the result. 
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Definition 

               The rank of a matrix A is the commion value of its row and column rank. 

Note: 1 

     Since the row rank and the column rank of a matrix are unaltered by elementary 

row and column operation equivalent matrixs have the same rank.  

    In particular if a matrix a is reduces to canonical from [
𝐼𝑟 0
0 0

]   then rank  of A=r

  

Thus to find the rank of a matrix A,we reduce A to the connonical and  from find tha 

number of non-zero enties in the diagonal 

   Note that in the conenial form of the matrix A there exists an r×r sub-matrix namely 

,Ir, where determination is not zero. 

Furthere every (r+1)×(r+1) sub –matrix contain a row of zeros and hence its 

determination is zero. 

Also under any etementary row or column operation the value of a determination is 

either unaltened  or multiplied by a non-zero constant 

Hence then matrix A is also such that  

i) There existe an rxr sub-matrix whose determinant is non zero . 

ii) The determinant of every (r+1) x (r+1) sub-matrix is zero. 

Hence one can also define the rank of a matrix. A to be rit A satisfices (i) and (ii). 

Note: 2 

 Any non-singular matrix of order n is equivalent to the identity matrix and heme its 

rank is n. 

Note: 3 



 

 

 

The rank of a matrix is not altered on multiplication by non-singular matrices since 

premultiplication by a non-singular matrix is equivalent to applying elementary 

column operations.  

 

Problem: 1 

     Find the rank of the matrix A = [
4 2 1 3
6 3 4 7
2 1 0 7

] 

 

Solution  

A = [
4 2 1 3
6 3 4 7
2 1 0 7

]  

 

˷ [
1 2 4 3
4 3 6 7
0 1 2 7 

]  C2  ↔   C3 

 

˷  [
 1     0        0      0
4 − 5 − 10 − 5
0      1        2     7

 ]   C2 →   C2 ˷    

 

 ~   [
1 0         0 0
0 −5   − 10 −5
0 1        2 7

]                                  

 

~[
1 0   0  0
0 −5    0 0
0 1   0 6

] 

 

~[
1 0    0 0
0 −5    0 0
0 0     0 6

] 



 

 

 

 

~[
1 0   0 0
0 −5  0    0
0 0   6 0

] 

  

~[
1 0  0 0
0 1  0 0
0 0  1 0

] 

∴ Rank of A = 3 

Problem: 3 

Find the rank of the matter A = [
1   1   1   1
4   1   0   2
0   3   4   2

] by examining the 

determination miners. 

 

 |
1   1   1
4   1   0
0   3   4

| = 1 [4-0] – [16-0] + 1 [12-0] 

= 16-16 

=0 

 

|
1   1   1
1   0   2
3   4   2

| = 1[0-3] -1 [2-6] +[4-0] 

 

=-8 +8 

=0 

 

 



 

 

 

|
1   1   1
4   1   0
0   3   4

| = 0 = |
1   1   1
1   0   2
3   4   2

|  

 

                 =-12 +12 

                =0 

 

 

|
1   1   1
4   0   2
0   4   2

| = 1[0-8] -1 [8-0] + [16 -0] 

                =-16 +16 

                =0 

 

 

|
1   1   1
4   1   2
0   3   2

| = 0 = 0= |
1   1   1
4   0   2
0   4   2

| 

 

Every 3x3 sub matrix of A has determinant Zero.  

Also, |
1   1
4   1

| =1 -4 = -3 ≠ 0 

 

∴ Rank of A =2 
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 Simultaneous Linear Equation 

                     In this section we shall apply the theory of matrices developed in the preceeding  

sections to study the existence of solution of simultaneous linear equations 

Matrix form of a set of linear equations   

                    Consider a system of m  linear equations in n unknowns  𝑥1, 𝑥2, ........,𝑥𝑛  given 

by   

                                  𝑎11𝑥1 + 𝑎12𝑥2 + ⋯…+ 𝑎1𝑛𝑥𝑛 = 𝑏𝑛 

                                 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯… . . +𝑎2𝑛𝑥𝑛=𝑏2 

.                                  ............... 

                                   ............... 

                                   𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯… . .+𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚 

Using the concept of matrix multiplication and equality of matrices this system can be 

written as AX=B where, 

                                    A=

[
 
 
 
 
 

  𝑎11           𝑎12       𝑎1𝑛

𝑎21       𝑎22       𝑎2𝑛

…… . .
………

𝑎𝑚1       𝑎𝑚2       𝑎𝑚𝑛

                                                 ]
 
 
 
 
 

 

                                   X=

[
 
 
 
 
 
𝑥1

𝑥2

.

.

.
𝑥𝑛]

 
 
 
 
 

 , B= 

[
 
 
 
 
 
𝑏1

𝑏2

.

.

.
𝑏𝑚]

 
 
 
 
 

  

The m x n matrix A is called the coefficient matrix. 

 

Definition 

A set of values of 𝑥1,𝑥2, …… . 𝑥𝑛  which satisfy the above system of equations is called a 

solution of the system .The system of equations is said to be consistent if it has at least  one 

solutions .Otherwise the system is said to be inconsistent. 



   The mx (n+1) matrix given by  

 

                                    A=

[
 
 
 
 
 

𝑎11   .  .  .  .  𝑎1𝑛       𝑏1

𝑎21     .  .  .     𝑎2𝑛       𝑏𝑛

…… . .
………

𝑎𝑚1       𝑎𝑚𝑛     𝑏𝑚

                                                 ]
 
 
 
 
 

 

 

is called the augmented matrix of the system and denoted by (A,B). 

Thus the augmented matrix (A, B) is obtained annexing to A the column matrix B, which 

become the ( n+1)  th column in (A, B) . 

Note   

Since every column in A appears in (A, B) the column space of the matrix A is a subspace of 

the column space of the matrix (A, B). 

Hence the rank of  A≤ rank of (A, B). 

Theorem 7.30. The system of linear equations 

AX = B is consistent iff rank of A = rank of (A, B). 

Proof.   

Let the system be consistent. 

Let 𝑢1,  𝑢2,…………𝑢𝑛 be a solution of the system 

Then B =𝑢1𝐶1+𝑢2C2+.......+𝑢𝑛𝐶𝑛 when 𝐶1, 𝐶2, ……𝐶𝑛 denote the columns of A. 

Hence then column space of the augmented matrix (A, B) namely 〈𝐶1, 𝐶2, … . . , 𝐶𝑛〉  is the 

same as the column space 〈𝐶,1 𝐶2, …… . , 𝐶𝑛〉 of A. 

Hence the rank of A = rank of (A, B). 

Conversely let rank of A = rank of 〈𝐴, 𝐵〉. 

Then the column rank of A = column rank of  〈𝐴, 𝐵〉. 

dim 〈𝐶1,𝐶2, … . . , 𝐶𝑛〉 = dim 〈C1, C2, …… . , CnB〉 . 

But 〈𝐶1, 𝐶2, … . , 𝐶𝑛〉 is a subspace ( 𝐶1, 𝐶2, … . . , 𝐶𝑛,B). 

B is linear combination of 𝐶1, 𝐶2, … . . , 𝐶𝑛 



If B = 𝑢1𝐶1+𝑢2𝐶2+ ……+. 𝑢𝑛𝐶𝑛 then 𝑢1, 𝑢2, …… , 𝑢𝑛 is solution of the system. 

Hence the theorem. 

 

Remark 

The solution of a given system of simultaneous equations is not altered by interchanging any 

equations or by multiplying any equation by a non-constant or by adding a multiple of one 

equation another.  Hence we can reduce the given system of equations to an equivalent 

system by applying elementary row operations to the augmented matrix. This redused  form 

will enable us to test for the consistency and to find the solution if it exists. This is illustrated 

the following problems. 

Solved problems 

Problem-1 

                Show that the equations 

                           x+y+z=6 

                           x+2y+3z=14 

                           x+4y+7z=30 

consistent and solve them. 

Solution 

The given system of equations can be put the matrix form  

                     AX=(
1 1 1
1 2 3
1 4 7

)(
𝑥
𝑦
𝑧
)=(

6
14
30

)=B 

The augmented matrix is given by  

                    (A, B)=[
1  1  1  6
1  2  3  14
1  4  7  30

] 

                  

                             ~[
1  1  1  6
0  1  2  8
0  3  6  24

]  
𝑅2  → 𝑅2 − 𝑅1 

𝑅3  → 𝑅3− 𝑅1 
 

                                    



                              ~ [
1  1  1  6
0  1  2  8
0  0  0  0  

] 𝑅3  → 𝑅3−3R2 

Hence rank of A = rank of (A, B)=2 

Also the given system of equation reduces to 

                [
1 1 1
0 1 2
0 0 0

] [
𝑥
𝑦
𝑧
] =[

6
8
0
] 

                         x+y+z=6 

                          y+2z=8 

Putting z =c we obtain the general solution of the system as x=c-2, y=8-2c, z=c. 

Problem-2 

Verify whether the following system of equations is consistent. If it is consistent, find the 

solution.  

                x-4y-3z=-16 

               4x-y+6z=16 

                2x+7y+12z =48 

                5x-5y+3z=0. 

Solution 

The matrix from of the system is given by  

                [

1  − 4  − 3
4   − 1     6 

2         7      12 
5 − 5       3   

] [
𝑥
𝑦
𝑧
]=[

−16
16
48
0

] 

The augmented matrix is given by  

     (A, B)=[

1 − 4 − 3 − 16
4 − 1    6     16 
2      7    12     48 
5   − 5      3     0

] 

               ~[

1 − 4 − 3 − 16
0    15    18    80
0    15    18    80
0    15    18    80

]

R2   →  R2−4R1

R3     → R3−2R1

R4   →    R4−5R1

 



                 ~[

1 − 4 − 3 − 16
0     15    18   80
0     0      0      0  
0      0      0      0 

]
𝑅3  →   𝑅3−𝑅2

𝑅4  →   𝑅4−𝑅2
 

                Rank of A = Rank of (A, B) = 2 and hence the system is consistent. Also the 

system of equations reduces to 

                (
1 −4 −3
0 15 18
0 0 0

) [
𝑥
𝑦
𝑧
] = [

−16
80
0
0

] 

          x-4y-3z=1 and 15y+18z=80. 

Putting as x=(9𝑐
5⁄ )+(16

3⁄ ), 

                y= - (6𝑐
5⁄ )+(16

3⁄ ) 

                z=c. 

Problem-3 

For what values of ƞ the equations  

                     x+y+z=1 

                    x+2y+4z=ƞ 

                    x+4y+10z=ƞ2are consistent? 

Solution 

The matrix from of the system is given by 

                    [
1 1 1
1 2 4
1 4 10

] [
𝑥
𝑦
𝑧
]=[

1
ƞ

ƞ2
] 

The augmented matrix is given by  

                  (A, B) = [

1  1   1   1  
1   2   4   ƞ

1  4   10  ƞ2
] 

                             ~[

1        1         1           1  
0        1         3        ƞ − 1

0          3          9      ƞ2 − 1
]
𝑅2  →   𝑅2−𝑅1

𝑅3  →   𝑅3−𝑅1
  



                            ~[

1               1                1                 1  
0               1              3          ƞ − 1 

       0                  0             0       ƞ2 − 3ƞ + 2
]𝑅3   →   𝑅3−3𝑅2 

         The given system is consistent iff ƞ2-3ƞ+2=0 

                                  Ƞ=2 or 1 

Problem -4 

              Show that the system of equation 

                           x+2y+z=11 

                           4x+6y+5z=8 

                           2x+2y+3z=19 is inconsistent. 

Solution 

              The matrix form of the system is given by 

                                  [
1 2 1
4 6 5
2 2 3

]  [
𝑥
𝑦
𝑧
] = [

11
8
19

] 

              The augmented matrix is given by  

                    (A, B) = [
1  2  1  11
4   6   5   8
2   2  3  19

] 

                               ~ [
1         2         1       11
0    − 2      1    − 36
0    − 2         1     − 3

]
𝑅2  →   𝑅2−4𝑅1

𝑅3  →   𝑅3−2𝑅1
 

                              ~ [
1      2      1    11

 0           − 2 1 −36     
0       0  0          33 

] 𝑅3   →   𝑅3−𝑅2 

                   Rank of A =2 and rank of (A, B) = 3  

                          The given system is inconsistent. 
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7.7    Characteristic Equation And Cayley 

Hamilton Theorem 

Definition: 

An expression of the form A0 + A1x + A2x
2 + . . . + AnX

n where A0, A1, . . . An are 

square matrices of the same order and An ≠ 0 is called the matrics polynomial of 

degree n.  

 For example, 

 (
1 2
0 3

) + (
1 1
2 1

) x +(
2 0
3 1

) x2 is a matrix polynomial of degree 2 and it is 

simply the matrix (1 + 𝑥 + x2 2 + 𝑥
2𝑥 + 3x2 3 + 𝑥 + x2). 

Definition: 

 Let A be any square matrix of order n and let I be The identity matrix of 

order n. Then the matrix polynomial given by A –  x 𝐼 is called the Characteristic 

matrix of A. 

The determinant |A –  x 𝐼| which is an ordinary polynomial in x of degree n 

is called the characteristic polynomial of A. 

The equation |A –  x 𝐼| = 0 is called the characteristic equation of A. 

 

 



Example 1: 

 Let A = (
1 2
3 4

) 

Then the characteristic matrix of A is A –  x 𝐼 given by 

   A –  x 𝐼 = (
1 2
3 4

) − x (
1 0
0 4

) 

      = (
1 − x  2

3 4 − x 
) 

Therefore the characteristic polynomial of A is  

   |A –  x 𝐼| = |
1 − x 2

3 4 − x
| 

          = (1 − x)(4 − x) − 6 

          = x2 − 5x − 2 

Therefore  the characteristic equation of A is |A –  x 𝐼| = 0 

Therefore  x2 − 5x − 2 = 0 is the characteristic equation of A. 

Example 2: 

Let A = (
1 0 2
0 1 2
1 2 0

) 

The characteristic matrix of A is A –  x 𝐼 given by 

          A –  x 𝐼 =  (
1 −  x 0 2

0 1 − x 2
1 2 −x

) 

The characteristic polynomial of A is  



          |A –  x 𝐼| = |
1 −  x 0 2

0 1 − x 2
1 2 −x

|  

         = (1 – x)[(1 − x)(−x) −  4]  ─ 2(1 – x) 

         = − x(1 − x)2− 4(1 − x) − 2 + 2x 

         =  − x3 + 2x2 − x − 4 + 4x − 2 + 2x 

         = − x3 + 2x2 + 5x2 − 6 

The characteristic equation of A is 

 − x3 + 2x2 + 5x2− 6 = 0 

     (i.e)  x3 − 2x2 − 5x2 + 6 = 0 

Theorem 7.31: (Cayley Hamilton Theorem) 

 Any square matrix A satisfies its characteristic equation. 

  (i.e) if  a0 + a1x + a2x
2 + . . . + anx

n is the characteristic polynomial of degree 

n of A then 

 a0I + a1A + a2A
2 + . . . + anA

n = 0. 

Proof: 

 Let A be a square matrix of order n. 

Let |A –  x 𝐼| = a0 + a1x + a2x
2 + . . . + anx

n……………………………..(1)be 

the characteristic polynomial of A.  

Now, adj(A –  x 𝐼) is a matrix polynomial of degree n − 1 since each entry of 

the matrix adj(A − x 𝐼) is a cofactor of A − x 𝐼 and hence is a polynomial of 

degree ≤ n −1. 



Therefore  let adj( A –  x 𝐼) = B0 + B1x + B2x
2 + . . . + Bn─1x

n─1  ………...(2) Now, 

(A –  x 𝐼)adj(A –  x 𝐼) = |A –  x 𝐼| I (since  (adj A)A = A (adj A) = |A | I ) 

Therefore (A –  x 𝐼)( B0 + B1x + B2x
2 + . . . + Bn─1x

n─1) 

         = (a0 + a1x + a2x
2 + . . . + anx

n) I using (1) and(2) 

Therefore  Equating the coefficients of the corresponding powers of x we get 

      AB0  = a0 I 

      AB1 ─  B0 = a1I 

      AB2 ─  B1 = a2I 

       ………..        ……   

       ………..        ……    

          ABn─1 ─  Bn─2 = an─1I 

            ─  Bn─ 1 = anI 

Pre-multiplying the above equations I, A, A2, ….., An  respectively and adding we 

get  

 a0I + a1A + a2A
2 + . . . + anA

n = 0. 

Note: 

 The inverse of a non-singlar matrix can be calculated by using the Cayley 

Hamilton theorem as follows. 

 Let a0 + a1x + a2x
2 + . . . + anx

n be the characteristic polynomial of A. 

Then by theorem 1.1, we have 

 a0I + a1A + a2A
2 + . . . + anA

n = 0 ……………………………. (3) 



Since  |A –  x 𝐼| = a0 + a1x + a2x
2 + . . . + anx

n  we get a0 =|A|  (by putting x = 0 ) 

Therefore a0 ≠ 0   ( since A is a non singular matrix) 

Therefore I = ─ 
1

𝑎0
 [a1A + a2A

2 + . . . + anA
n]   (by 3) 

   A─1 = ─ 
1

𝑎0
 [a1I + a2A + . . . + anA

n─1] 
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Problem:1  

                   Find the characteristic equation of the matrix  

                 A = [
𝟖 −𝟔 𝟐

−𝟔 𝟕 −𝟒
𝟐 −𝟒 𝟑

] 3 

Solution: 

                The characteristic equation of  A is given by │A-XI│ = 0. 

I = (
1 0 0
0 1 0
0 0 1

)   |
8 − 𝑥 −6 2
−6 7 − 𝑥 −4
2 −4 3 − 𝑥

| = 0 

(8-x) [(7-x)(3-x)-16] + 6[-6(3-x)+8] + 2(24-2(7-x)] =0 

(8-x) [21-7x-3x+x2-16] + 6 [-18+6x+8] +2 (24-14+2x) = 0 

(8-x) (x2-10x+15 ) + 6 (6x-10)+2 (2x+10) = 0 

(8x2-80x+40-x3+ (10x2-5x)+ (36-60) + (4x+20) = 0 

X3-18x2+45x = 0. 

Which represents the characteristic equation of A. 

 

Problem:2  

                    Show that the non-singular matrix A = (
𝟏 𝟐
𝟑 𝟏

) satisfies the 

equation A2-2A-5I = 0.  Hence evaluate A-1. 

Solution:    

                 The characteristic polynomial of A is  

│A-XI│ = |
1 − 𝑥 2

3 1 − 𝑥
|  

               = 3(1-x) (1-x)-6 

               = 1-x+x+x2-6 

               = x2-2x-5 



By cayley Hamilton theorem A2-2A-5I = 0 

               -5I = -A2+2A 

                 I = 1/5 (A2-2A) 

           ⸫A-1 = 1/5 (A-2I) 

                   = 1/5 [
  (

1 2
3 1

) − 2 (
1 0
0 1

)
]    

                   = 1/5  [ 
1 − 2 2 − 0 
3 − 0 1 − 2

]  

                   = 1/5 (
−1 2
3 −1

) 

 

Problem:3 

                    Show that the matrix A = [
𝟐 −𝟑 𝟏
𝟑 𝟏 −𝟑

−𝟓 𝟐 −𝟒
] satisfies the equation 

on A (A-I) (A+2I) = 0 

Solution: 

                The characteristic polynomial of A is  

│A- XI│= |
2 − 𝑥 −3 1

3 1 − 𝑥 3
−5 2 −4 − 𝑥

|    

               = (2-x)[(1-x)(4-x)-6] + 3[3(4-x)+5]+ [6-(1-x) (-5)]     

               = (2-x) [-4x+4x+x2-] + 3[[-12-3x+15] + [6+5-5x] 

               = (2-x) [x2+ 3x-10] + 3[ -3x+3] + [-5x + 1] 

               = 2x2+ 6x-20-x3-3x2+ 10x-9x+ 9-5x+11 

               = -x3-x2+2x 

⸫ By cayley Hamilton theorem A3-A2+2A = 0 

       A3+A2-2A = 0 

   Hence A (A2+A-2I) = 0 

A (A+ 2I) (A-I) =0 



 

Problem:4 

                   Using Cayley Hamilton theorem find the inverse of the matrix 

[
𝟕 𝟐 −𝟐

−𝟔 −𝟏 𝟐
𝟔 𝟐 −𝟏

]  

Solution:  

Let A = [
7 2 −2

−6 −1 2
6 2 −1

]  

The characteristic polynomial of A = │A-xI│ 

                      = |
7 − 𝑥 2 −2
−6 −1 − 𝑥 2
6 2 −1 − 𝑥

|  

                      = (7-x) [(1-x)(-1-x)-4] -2 [-6(1-x)-12] -2 [-12-6(1-x)] 

                      = (7-x) [1+x+x+x2-4] -2 [6+6x-12] -2 [-12+6+6x] 

                      = (7-x) (x2+2x-3)-12(x-1)-12(x-1) 

                      = 7x2+ 14x-21-x3+2x2+3x-12x+12-12x+12 

                      =  -x3+5x2-7x+3 

⸫ By cayley Hamilton theorem,  

-A3+5A2-7A+3I3 =0 

A3-5A2+7A+3I3 = 420 

3I3 = A3-5A2+7A 

I3= 1/3 (A3-5A2+7A) 

Pre multiplying by A-1on oth sides we get  

A-1 = 1/3 [A3-5A2+7A]         ………. (1) 

Now,  

A2 = [
7 2 −2

−6 −1 2
6 2 −1

]     [
7 2 −2

−6 −1 2
6 2 −1

 ]    



= [
49 − 12 − 12 14 − 2 − 4 −14 + 4 + 2
−42 + 6 − 12 −12 + 1 + 4 12 − 2 + 2
42 − 12 − 6 12 − 2 − 2 −12 + 4 + 1

]  

= [
25 8 −8

−24 −7 8
24 8 −7

]  

From (1) 

A-1 = 1/3  

[
 
 
 
 (

25 8 −8
−24 7 8
24 8 −7

) − (
35 10 −10

−30 −5 10
30 10 −5

) + (
7 0 0
0 7 0
0 0 7

)

]
 
 
 
 

    

      =1/3 [
25 − 35 + 7 8 − 10 − 0 −8 + 10 + 0

−24 + 30 + 0 −7 + 5 + 7 8 − 10 + 0
24 − 30 + 0 8 − 10 + 0 −7 + 5 + 7

] 

      = 1/3[
−3 −2 2
6 5 −2

−6 −2 5
]   

      = [

−1 −2/3 2/3
2 5/3 −2/3

−2 −2/3 5/3
] 

 

Problem:5  

                      Find the inverse of the matrix 

[
𝟑 𝟑 𝟒
𝟐 −𝟑 𝟒
𝟎 −𝟏 𝟏

]   𝐮𝐬𝐢𝐧𝐠 𝐜𝐚𝐲𝐞𝐥𝐲 𝐡𝐚𝐦𝐢𝐥𝐭𝐨𝐧 𝐭𝐡𝐞𝐨𝐫𝐞𝐦 

Solution: 

                The characteristic polynomial of A = │A-XI│ 

= |
3 − 𝑥 3 4

2 −3 − 𝑥 4
0 −1 1 − 𝑥

|   

= (3-x) [(3-x) (1-x) +4] – 3 [2(1-x) -0] +4[2-0] 

= (3-x) [-3x+3x+x2+4] -3 [2-2x]-8 

= (3-x)[x2+2x+1] -6+6x-8 



= 3x2+6x+3-x3-2x2-x+6x-14 

= -x3+x2+11x-11 

⸫ By cayely Hamilton theorem 

-A3+A2+11A-11I3= 0 

⸫ A3-A2-11A+11I3 = 0 

11I3 = - (A3-A2-11A) 

  I3 = -1/11 [A3-A2-11A] 

Pre multiplying by A-1 on both sides we get, 

A-1 = -1/11 [A2-A-11I3]  ………(!) 

A2 = [
3 3 4
2 −3 4
0 −1 1

]   [
3 3 4
2 −3 4
0 −1 1

]  

     = [
9 + 6 + 0 9 − 9 − 4 12 + 12 + 4
6 − 6 + 0 6 + 9 − 4 8 − 12 + 4
0 − 2 + 0 0 + 3 − 1 0—4 + 1

] 

     = [
15 −4 28
0 11 0

−2 2 −3
] 

From (1) 

A-1 = -1/11 

[
 
 
 
 (

15 −4 28
0 11 0

−2 2 −3
) (

3 3 4
2 −3 4
0 −1 1

) (
11 0 0
0 11 0
0 0 11

)

]
 
 
 
 

 

      = -1/11[
15 − 3 − 11 −4 − 3 − 0 28 − 4 − 0
0 − 2 − 0 11 + 3 − 11 0 − 4 − 0

−2 − 0 − 0 2 + 1 − 0 −3 − 1 − 11
] 

      = [

−1/11 7/11 −211/11
2/11 −3/11 4/11
2/11 −3/11 15/11

] 

 

 

 



 

Problem:6 

                   Verify cayley Hamilton theorem for the matrix A = (
𝟏 𝟐
𝟒 𝟑

) 

Solution: 

                  The characteristic of equation is │A-XI│ = 0 

⸫ |
1 − 𝑥 2

4 3 − 𝑥
|  = 0 

(1-x) (3-x) -8 = 0 

3-x-3x+x2-8 = 0 

X2-4x-5 = 0 

By Cayley Hamilton theorem A satisfies is characteristic equation  

⸫ we have A2-4A-5I = 0 

A2 = (
1 2
4 3

)  (
1 2
4 4

) 

     = [
(1 2) (

1
4
) (1 2) (

2
3
)

(4 3) (
1
4
) (4 3) (

2
3
)
] 

     = [
1 + 8 2 + 6
4 + 12 8 + 9

] 

     = [
9 8
16 17

] 

A2-4A-5I = (
9 8
16 17

) -  (
4 8
16 12

) - (
5 0
0 5

) 

                = (
9 − 4 − 5 8 − 8 − 0

16 − 16 − 0 7 − 12 − 5
) 

                = (
0 0
0 0

) 

                = 0 

⸫ Theorem is verified. 

 

 



 

Problem:7 

                   Using cayley Hamilton theorem for the matrix A = [
𝟏 𝟎 −𝟐
𝟐 𝟐 𝟒
𝟎 𝟎 𝟐

] 

find (i) A-1  (ii) A4 

Solution: 

                The characteristic equation of A is │A-XI│ = 0 

|
1 − 𝑥 0 2

2 2 − 𝑥 4
0 0 2 − 𝑥

|  = 0 

(1-x) [(2-x) (2-x)-0] – 0[-2(0-0)] = 0 

(1-x) (4-2x-2x+x2) = 0 

(1-x) (x2-4x+4) = 0 

X2-4x+4-x3+4x2-4x = 0 

X3+5x2-8x+4 = 0 

X3-5x2+8x- 4 = 0 

By cayley Hamilton theorem  

A3- 5A2+8A-4I = 0 ………(1) 

4I = A3-5A2+8A 

I = ¼[A3-5A2+8A] 

i) To find A-1  pre multiplying by A-1we get 

A-1= ¼ [A2-5A+8I] ………(2)  

A2 = (
1 0 −2
2 2 4
0 0 2

)     (
1 0 −2
2 2 4
0 0 2

) 

                     = [
1 + 0 − 0 0 + 0 + 0 −2 + 0 − 4
2 + 4 + 0 0 + 4 + 0 −4 + 8 − 8
0 + 0 + 0 0 + 0 + 0 0 + 0 + 4

]   

                     = [
1 0 −6
6 4 12
0 0 4

] 

From (2) 



A-1 = ¼ 

[
 
 
 
 (

1 0 −6
6 4 12
0 0 4

) − (
5 0 −10
10 10 20
0 0 10

) + (
8 0 0
0 8 0
0 0 8

)

]
 
 
 
 

 

       = ¼ [
1 − 5 + 8 0 − 0 + 0 −6 + 10 + 0
6 − 10 + 0 4 − 10 + 8 12 − 20 + 0
0 − 0 + 0 0 − 0 + 0 4 − 10 + 8

]  

       = ¼ [
4 0 4

−4 2 −8
0 0 2

] 

       = (

1 0 1
−1 1/2 −2
0 0 1/2

) 

 

ii) To find A4 

From (1)  

A3 = 5A2-8A+4I 

A4 = 5A3-8A2+4A 

     = 5 [5A2-8A+4I] – 8A2 +4A 

     = 25A2-40A+20I-8A2+4A 

     = 17A2-36A+20A 

     = 17 (
1 0 −6
6 4 12
0 0 4

)  -  (
1 0 −2
2 2 4
0 0 2

)  + (
20 0 0
0 20 0
0 0 20

) 

     = (
17 0 −102
102 68 204
0 0 68

)  -  (
36 0 −72
72 72 144
0 0 72

)  + (
20 0 0
0 20 0
0 0 20

) 

     = [
17 − 36 + 20 0 − 0 + 0 −102 + 72 + 0
102 − 72 + 0 68 − 72 + 20 204 − 144 + 0

0 − 0 + 0 0 − 0 + 6 68 − 72 + 20
] 

 A4      = [
1 0 −30
30 16 60
0 0 16

] 

 



                 

      

      

 


